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symmetric mixed-strategy equilibrium for n � 4 firms is characterized as the
solution of a well-behaved boundary value problem. The analysis suggests that,
in contrast to the cases n ¼ 3 and n ! 1, the equilibrium for a finite number of
n � 4 firms tends to overrepresent locations at the periphery of its support
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1 Introduction

The present paper deals with what is known as the Hotelling (1929) model of
pure location, in which each of a given finite number of firms simultaneously
and independently chooses a location on the unit interval so as to maximize its
expected market share.1 While traditional applications related to spatial compe-
tition and political theory remain important, the framework has more recently

*Corresponding author: Christian Ewerhart, Department of Economics, University of Zurich,
Schönberggasse 1, CH-8001 Zürich, Switzerland, E-mail: christian.ewerhart@econ.uzh.ch

1 The pure location model is a simplified variant of Hotelling’s original set-up (cf. Chamberlin
1938, Appendix C). For an introduction to the literature on spatial competition, see Gabszewicz
and Thisse (1992).
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been recognized as capturing also strategic aspects of the competition between
professional forecasters.2

The game-theoretic analysis of the pure location game was initially con-
cerned mainly with equilibria in pure strategies (Lerner and Singer 1937; Eaton
and Lipsey 1975).3 However, for n ¼ 3, there is no pure-strategy equilibrium.
Moreover, in cases where the pure-strategy equilibrium exists, the equilibrium
typically vanishes if the density function associated with the underlying distri-
bution of consumer preferences is either strictly convex or strictly concave
(Osborne and Pitchik 1986). Finally, pure-strategy equilibria may sometimes be
harder to coordinate upon (see, e.g., Xefteris 2014).4 It should, therefore, not
come as a surprise that attention has also been devoted to the analysis of mixed-
strategy equilibria.

Of particular interest has been the so-called doubly symmetric equilibrium in
which each firm uses the same mixed strategy and in which, in addition, the
distribution of individual choices that represents the mixed equilibrium strategy is
symmetric with respect to the midpoint of the location interval. Shaked (1982)
showed that the doubly symmetric mixed-strategy equilibrium with n ¼ 3 firms is
unique, and uniform on the interval ½1=4; 3=4�. For general n � 3, Osborne and
Pitchik (1986) proved that there exists an atomless doubly symmetric mixed-
strategy equilibrium, where the support is necessarily an interval if consumer
preferences are distributed uniformly. Moreover, as the number of firms n goes to
infinity, any convergent sequence of twice continuously differentiable equilibrium
distributions must ultimately approach the underlying distribution of customer
preferences. Despite these general insights, however, a more qualitative descrip-
tion of the mixed-strategy equilibrium for n � 4 firms remained elusive.5

The contribution of this paper is a re-formulation of the equilibrium condi-
tion for the location game with n � 4 firms in terms of a well-behaved boundary
value problem. Based on the resulting characterization of the equilibrium dis-
tribution, a numerical solution is obtained for small values of n by studying

2 See Laster, Bennett, and Geoum (1999), Ottaviani and Sørensen (2006), and Marinovic,
Ottaviani, and Sørensen (2013).
3 See also Graitson (1982), Denzau, Kats, and Slutsky (1985), and Cox (1987).
4 As an illustration, consider the location model with n ¼ 5 firms. In the pure-strategy equili-
brium, two firms locate at the first sextile, two others at the fifth sextile, and one firm at the
market center. Thus, the market share of the central firm is twice as large as that of its
competitors, making coordination on the pure-strategy equilibrium potentially difficult.
5 Osborne and Pitchik (1986, p. 227) write: “Even if C is uniform this is a difficult problem – (2)
is a nonlinear integral equation, about which little in general is known.” Also the brute-force
approach via discretization of the strategy space has remained ineffective. See, e.g. Huck,
Müller, and Vriend (2002) for the case of n ¼ 4 firms.
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trajectories that depart from the midpoint of the location interval. It turns out
that, in all cases considered, the doubly symmetric equilibrium involves a
tendency to overrepresent locations at the periphery of its support interval.
Moreover, an increase in the number of firms universally leads to a wider
range of locations that are used in equilibrium and to a more dispersed distribu-
tion of individual choices.6

The remainder of the paper is structured as follows. Section 2 reviews
the location game. Section 3 discusses the first-order condition. The equilibrium
is characterized and discussed in Section 4. Section 5 outlines the numerical
analysis. Section 6 concludes. An Appendix contains technical proofs.

2 Review of the location game

This section introduces the set-up and reviews some well-known results regard-
ing the doubly symmetric mixed-strategy equilibrium of the location game. To
avoid confusion, the framework will be presented primarily in terms of the
original interpretation, i.e. in terms of firms choosing locations. Alternative
interpretations will be allowed again in the concluding section.

In the location game, a finite number of n � 3 firms independently and
simultaneously choose a location in the unit interval. Opening an outlet at the
selected location is costless, yet any firm may open at most one outlet. As set
forth more generally in Osborne and Pitchik (1986), the expected payoff of firm 1
when it chooses the location z 2 ½0; 1� and each of the competitors 2; :::; n
randomizes according to a distribution F is given as

�ðzÞ ¼ ðn� 1Þ
Z 1

z
f ðyÞð1� FðyÞÞn�2 z þ y

2
dy þ

Xn�2

k¼1

n� 1
k

� �
kðn� k � 1Þ ½1�

�
Z z

0

Z 1

z
f ðxÞf ðyÞFðxÞk�1ð1� FðyÞÞn�k�2 y � x

2
dydx

þ ðn� 1Þ
Z z

0
f ðxÞFðxÞn�2 1� z þ x

2

� �
dx;

6 Drinen, Kennedy, and Priestley (2009) study non-equilibrium aspects of the same problem,
assuming that all competitors randomize independently according to a common exogenous distribu-
tion. For instance, in the uniformcasewithn � 5 players, the payoff function is shown to possess two
small peaks, which are located close to 2=nþ 2 and n=nþ 2, respectively. Moreover, expected
payoffs are nearly constant between the two peaks and quickly decline to zero at the boundary of
the unit interval. Thus, like in the present paper, there is an overrepresentation of (moderate)
extremes. The author is grateful to the referee for bringing his attention to that interesting paper.
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where f ¼ F
0
denotes the density of the equilibrium distribution.7 The right-hand

side of eq. [1] obviously reflects the variety of possible scenarios for the repre-
sentative firm: Ending up left of all n� 1 competing firms; then, for
k ¼ 1; :::; n� 2, having a total of k competing firms to the left and n� k � 1
competing firms to the right; or, finally, ending up right of all other firms.8

For a mixed-strategy equilibrium to be doubly symmetric, it is required that (i)
all firms use the same mixed strategy F, and (ii) the strategy F is unchanged when
reflected at the midpoint of the location interval, i.e., Fð1� zÞ ¼ 1� FðzÞ for all
z 2 ½0; 1�. The following result summarizes what is known about the doubly
symmetric mixed-strategy equilibrium of the location game in the uniform case.

Theorem 1. For n � 3, there exists a doubly symmetric mixed-strategy equilibrium
F ¼ Fn, where the distribution F has support ½α; 1� α� for some α ¼ αn 2 ½0; 1=2Þ.
For n ¼ 3, the equilibrium is unique, and such that individual location choices are
distributed uniformly over the interval ½1=4; 3=4�. Moreover, if Fn is twice continu-
ously differentiable and converges uniformly (including in terms of its first and
second derivatives) to some twice continuously differentiable F1, then F1 induces
a uniform distribution of location choices on the unit interval.

Proof. See Osborne and Pitchik (1986, Prop. 3 and 4). The case n ¼ 3 is treated in
Shaked (1982). □

3 Discussion of the first-order condition

For any given number of competitors k � 1, consider the function

GkðzÞ ¼
Z z

α
FðxÞkdx: ½2�

As will become clear from the proof of the lemma below, GkðzÞ corresponds to
the average distance between z and the highest of k lower locations.9 Using this
notation, marginal expected payoffs of the representative firm may be written in
a relatively compact way.

7 Only distributions allowing a density will be considered in this paper.
8 To capture professional forecasting, suppose that a macroeconomic indicator � 2 IR is dis-
tributed ex-ante according to an uninformative uniform prior, and that experts have access to
privileged information �0 2 IR, in the sense that � lies somewhere in the interval ½�0; �0 þ 1�. The
location game may then be understood as a contest, in which the forecaster whose estimate
�0 þ z turns out to be closest to the true state of the world receives a prize.
9 Similarly, provided F is symmetric, Gkð1� zÞ corresponds to the average distance between z
and the lowest of k higher estimates.
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Lemma 1. On the support of F, firm 1’s marginal expected payoffs are given as

�0ðzÞ ¼ �’ðzÞ þ ’ð1� zÞ þ f ðzÞ ψðzÞ � ψð1� zÞf g; ½3�
where ’ðzÞ ¼ FðzÞn�1=2 and

ψðzÞ ¼ 1
2

Xn�2

k¼1

n� 1
k

� �
kFðzÞk�1Gn�k�1ð1� zÞ þ ðn� 1Þð1� zÞFðzÞn�2: ½4�

Proof. See the Appendix. □

Condition [3] captures two pairs of mirror-image effects resulting from a mar-
ginal shift (to the right) in firm 1’s location. First, there is a marginal cost ’ðzÞ,
due to a reduced market share in the scenario in which firm 1’s location is the
right-most, and a mirror-image marginal benefit ’ð1� zÞ, due to an increased
market share in the scenario in which firm 1’s location is the left-most. Second,
there is a marginal benefit, represented by ψðzÞ and measured in units of the
density, due to an increased probability that the locations of any given set of
competitors end up left of firm 1’s estimate, and a mirror-image cost represented
by ψð1� zÞ, due to a reduced probability that the locations of any complemen-
tary set of competitors end up right of firm 1’s location. The doubly symmetric
mixed-strategy equilibrium just balances these two pairs of effects at any point
of the support interval.

Setting marginal payoffs to zero, one finds the key equation

f ðzÞ ¼ ’ðzÞ � ’ð1� zÞ
ψðzÞ � ψð1� zÞ : ½5�

An obvious obstacle to interpreting eq. [5] as a differential equation in the usual
meaning of the term is that the functions ’ and ψ are evaluated at both z and
1� z. This problem is addressed by a functional equation that is stated in the
following lemma.

Lemma 2. The functions G1;G2; ::: satisfy the functional equation

Gkð1� zÞ ¼ Ck � z �
Xk
m¼1

ð�1Þm k
m

� �
GkðzÞ ½6�

for any integer k � 1, with constants

Ck ¼ 1
2
þ
Xk�1

m¼1

ð�1Þm k
m

� �
Gm

1
2

� �
þ 1þ ð�1Þk
n o

Gk
1
2

� �
: ½7�

Proof. See the Appendix. □

Mixed Equilibrium in a Pure Location Game 461

Brought to you by | Universitaetsbibliothek Basel
Authenticated

Download Date | 4/29/19 3:43 PM



4 Equilibrium characterization

After these preparations, the equilibrium distribution can be characterized as the
solution of a boundary value problem with a relatively simple structure.

Theorem 2. Let n � 3. Then there exists a function Φn : IR2n�2 ! IR¨fþ1;�1g
such that any doubly symmetric mixed-strategy equilibrium F ¼ Fn of the location
game with n firms corresponds to the first element of a tuple

~F; ~G1; . . . ; ~Gn�2; ~C1; . . . ; ~Cn�2; ~α
� �

; ½8�

composed of functions ~F; ~G1; . . . ; ~Gn�2 : ½~α; 1� ~α� ! IR and constants ~C1; . . . ;
~Cn�2 2 IR; ~α 2 ½0; 1=2Þ, such that [8] satisfies the system of ordinary first-order
differential equations

~F0ðzÞ ¼ Φnð~FðzÞ; ~G1ðzÞ; . . . ; ~Gn�2ðzÞ; ~C1; . . . ; ~Cn�2; zÞ; ½9�

~G0
kðzÞ ¼ ~FðzÞk ðk ¼ 1; :::; n� 2Þ; ½10�

as well as the boundary conditions ~Fð~αÞ ¼ ~G1ð~αÞ ¼ ::: ¼ ~Gn�2ð~αÞ ¼ 0;
~Fð1=2Þ ¼ 1=2, and

~Ck ¼ 1
2
þ
Xk�1

m¼1

ð�1Þm k
m

� �
~Gm

1
2

� �
þ 1þ ð�1Þk
n o

~Gk
1
2

� �
½11�

for k ¼ 1; :::; n� 2. Conversely, if the first component ~F of a solution of the
boundary value problem stated above is restricted to be monotone increasing
and symmetric with respect to a reflection at z ¼ 1=2, then ~F represents a doubly
symmetric mixed-strategy equilibrium of the location game.

Proof. See the Appendix. □

The proof of Theorem 2 is constructive. Specifically, the function Φn used in the
characterization simply corresponds to the right-hand side of eq. [5].

In the case n ¼ 3, one can check that the two-dimensional system (9–10)
reduces to the differential equation

~F0ðzÞ ¼ 2~FðzÞ � 1

4~FðzÞ � 6z þ 1
; ½12�
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with boundary conditions ~Fð~αÞ ¼ 0 and ~F 1=2ð Þ ¼ 1=2.10 As shown by Shaked
(1982), eq. [12] has precisely one solution satisfying ~F 1=2ð Þ ¼ 1=2. Thus, the
unique solution of the boundary value problem is ~FðzÞ ¼ 2z � 1=2, with ~α ¼ 1=4.

In cases where n � 4, the differential equation [9] becomes more involved,
so that an explicit solution is not readily available. In particular, there is no
obvious substitution that would simplify the equation.11 We also checked that, in
general, there is no distribution with a quadratic density function that solves eq.
[9]. However, the characterization paves the way for a numerical computation of
the equilibrium distribution.

5 Numerical analysis

An effective way to approximate the equilibrium is a “shooting method” that
works with trajectories starting at the midpoint of the location interval.12 For
intuition, note that the starting point of the trajectory at z ¼ 1=2 is an
ðn� 1Þ-dimensional vector

X0 ¼ F
1
2

� �
;G1

1
2

� �
; :::;Gn�2

1
2

� �� �
; ½13�

whose first component is fixed through the boundary condition F 1=2ð Þ ¼ 1=2,
whereas the remaining components G1 1=2ð Þ; :::;Gn�2 1=2ð Þ are initially unknown.
Any given approximation for X0 may then be improved by adapting the values
G1 1=2ð Þ; :::;Gn�2 1=2ð Þ until the corresponding trajectory satisfies the remaining
boundary conditionsat the boundary of the support intervalwith sufficient accuracy.

The details of the approximation are described below. The unknown com-
ponents of the vector X0 were initialized with the corresponding values for the
uniform distribution, i.e. with

Gk
1
2

� �
¼
Z 1=2

0
zkdz ¼ 1

k þ 1
1
2

� �kþ1

½14�

10 More generally, it can be seen as a consequence of Lemma 2 that, for n odd, the function Φn

defined in the proof of Theorem 2 does not depend on Ĝn�2. Thus, for n odd, the dimension of
system [9–10] reduces to n� 2. For n even, however, this simplification is not possible.
11 E.g., in the case n ¼ 4, an application of Shaked’s (1982) substitution hðzÞ ¼
~FðzÞ � 1=2Þ=ðz � 1=2
� �

does not lead to a substantial simplification of the three-dimensional
system [9–10].
12 The alternative computation of trajectories from the boundary of the equilibrium support
proved to be numerically instable.
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for k ¼ 1; :::; n� 2.13 The iteration repeated the following steps. First, the gradi-
ent of the trajectory at the midpoint of the location interval was calculated using
the relationship14

f
1
2

� �
¼ 1þ 2n�3

ðn� 2Þ 1þ Pn�3

k¼1

n� 3
k

� �
2kGk

1
2

� �� 	 : ½15�

This equation was also employed to approximate the gradient of the trajectory
in a small neighborhood of the midpoint. Next, the trajectory itself was computed
on the basis of a discrete variant of system [9–10] with a grid width of "¼ 10�5.15

Finally, the value of 1� α was determined to be the left-most grid point z at
which the first component of the trajectory exceeded unity. The multivariate
approximation was executed by a solver plug-in of a standard spreadsheet soft-
ware, where we used

Pn�2
k¼1 GkðαÞð Þ2 < 10�9 as a stopping condition.

Figure 1 shows the doubly symmetric mixed-strategy equilibrium for selected
values of n. As can be seen, the numerical density f is strictly M-shaped

Figure 1: The density of the doubly symmetric mixed-strategy equilibrium for selected values of n

13 Changing the initial conditions within reasonable bounds did not have any visible effect on
the numerical approximations.
14 A proof of eq. [15] can be found in the Appendix.
15 A grid width of "¼ 10�4 was sufficient to obtain convergence for n � 7.
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when n � 4.16 This finding is somewhat puzzling because it implies that the
equilibrium distribution for a finite number of n � 4 firms differs qualitatively
from the respective uniform distributions in the cases n ¼ 3 and n ! 1.17

A second finding from the numerical analysis is that, as n increases, the
locations chosen by any individual firm cover a larger support and become more
dispersed (in the sense of a mean-preserving spread). Indeed, by comparing the
antiderivatives of the respective distribution functions for n and nþ 1 firms, we
verified within the range of considered examples that an increase in the number
of firms implies a second-order stochastic dominance relationship between the
equilibrium distributions. Thus, e.g., the distribution for n ¼ 11 firms is a mean-
preserving spread of the distribution for n ¼ 10 firms. At least the widening of
the equilibrium support is intuitive, however, because an increase in the popu-
lation density would probably reduce expected payoffs more substantially in the
interior of the support than at the boundary.

6 Concluding remarks

In this paper, we characterized the doubly symmetric mixed-strategy equilibrium
in the Hotelling game of pure location for n � 4 firms and subsequently used the
characterization to compute the equilibrium for small values of n. It turned out
that, in all considered examples, the equilibrium overrepresents locations at the
periphery of its support interval. Moreover, competition tends to expand the
range of locations used in equilibrium, and to disperse the equilibrium distribu-
tion in the sense of a mean-preserving spread. These findings easily translate
into testable predictions for spatial competition and political theory.18

As for the application to strategic forecasting, the analysis implies
that forecasts will tend to be diverse (including moderately extreme) even in
the absence of private information. Moreover, competition among forecasters

16 The graphs for the other calculated examples look similar. Moreover, no indication was
found that the shape of the equilibrium distributions would structurally change for even larger
values of n.
17 Huck, Müller, and Vriend (2002) hypothesize that the probability of getting “squeezed”
between two competitors should be relatively small to make locations at the center as attractive
as locations at the periphery. However, that intuition does not really explain our findings
because the same intuition should apply likewise in the cases n ¼ 3 and n ! 1, where the
equilibrium is, however, not markedly M-shaped.
18 For example, if politicians maximize their votes and if there are at least four parties, then
moderately extreme platforms should be more common than central platforms. Furthermore,
the existence of ultra-extreme platforms should correlate with the number of political parties.
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may be counterproductive. Both observations clearly seem worthwhile to be
made.19

Acknowledgments: The problem studied in this paper was kindly suggested to
me by Marco Ottaviani. Useful comments on an earlier version were received by
Burkhard Schipper and an anonymous referee. For useful discussions, I am
grateful to Pavlo Blavatskyy and Jean Gabszewicz.

Appendix: Proofs

Proof of Lemma 1. Differentiation of eq. [1] yields

�0ðzÞ ¼ n� 1
2

Z 1

z
f ðyÞð1� FðyÞÞn�2dy � ðn� 1Þf ðzÞð1� FðzÞÞn�2z

þ f ðzÞ
Xn�2

k¼1

�
n� 1
k

�
kðn� k � 1Þ

½16�

� FðzÞk�1
Z 1

z
f ðyÞð1� FðyÞÞn�k�2 y � z

2
dy

�

�ð1� FðzÞÞn�k�2
Z z

0
f ðxÞFðxÞk�1 z � x

2
dx
	

þ ðn� 1Þf ðzÞFðzÞn�2ð1� zÞ � n� 1
2

Z z

0
f ðxÞFðxÞn�2dx:

We will now rewrite the two integrals in the interior of the curly brackets. First,
applying integration by parts, one can check that

Z z

0
f ðxÞFðxÞk�1 z � x

2
dx ¼ FðxÞk

k
z � x
2







x¼z

x¼0

þ 1
2

Z z

0

FðxÞk
k

dx ½17�

¼ GkðzÞ
2k

; ½18�

19 Competition at the level of individual estimates is indeed sometimes avoided. This has been
the case, for example, for the Joint Economic Forecast that has been prepared twice yearly since
1950 by leading economic research institutes on behalf of the German Ministry of Economic
Affairs. For a general approach to mitigating the inefficiencies caused by strategic information
transmission, see Ewerhart and Schmitz (2000).
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where we have used that FðxÞ ¼ 0 for x 2 ½0; α�. Second, applying the substitu-
tion x ¼ 1� y, and noting the symmetry property 1� Fð1� xÞ ¼ FðxÞ, one
obtains

Z 1

z
f ðyÞð1� FðyÞÞn�k�2 y � z

2
dy ¼

Z 1�z

0
f ðxÞFðxÞn�k�2 1� z � x

2
dx: ½19�

Hence, eqs. [17–18], with z and k replaced by 1� z and n� k � 1, respectively,
imply

Z 1

z
f ðyÞð1� FðyÞÞn�k�2 y � z

2
dy ¼ Gn�k�1ð1� zÞ

2ðn� k � 1Þ : ½20�

Next, the terms obtained for the integrals via eqs. [17–18] and [20] are plugged
into eq. [16]. Using also the obvious relationships

n� 1
2

Z 1

z
f ðyÞð1� FðyÞÞn�2dy ¼ 1

2
ð1� FðzÞÞn�1; ½21�

n� 1
2

Z z

0
f ðxÞFðxÞn�2dx ¼ 1

2
FðzÞn�1; ½22�

one arrives at

�0ðzÞ ¼ 1
2
ð1� FðzÞÞn�1 � ðn� 1Þf ðzÞð1� FðzÞÞn�2z þ f ðzÞ

2

Xn�2

k¼1

n� 1
k

� �
½23�

� kFðzÞk�1Gn�k�1ð1� zÞ � ðn� k � 1Þð1� FðzÞÞn�k�2GkðzÞ
n o
þ ðn� 1Þf ðzÞFðzÞn�2ð1� zÞ � 1

2
FðzÞn�1:

A simple re-ordering of terms, mapping index k to n� k � 1 and vice versa,
finally shows that

Xn�2

k¼1

�
n� 1
k

�
ðn� k � 1Þð1� FðzÞÞn�k�2GkðzÞ

¼
Xn�2

k¼1

�
n� 1
k

�
kð1� FðzÞÞk�1Gn�k�1ðzÞ:

½24�

Using now eq. [24] to rewrite eq. [23], and exploiting the symmetry of F once
more, the lemma follows. □
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Proof of Lemma 2. By definition, Gkð1� zÞ ¼ R 1�z
α FðxÞkdx. Splitting the integral

and subsequently exploiting symmetry, one finds

Gkð1� zÞ ¼
Z 1�α

α
FðxÞkdx �

Z 1�α

1�z
FðyÞkdy ½25�

¼ Gkð1� αÞ �
Z z

α
Fð1� xÞkdx ½26�

¼ Gkð1� αÞ �
Z z

α
ð1� FðxÞÞkdx: ½27�

Thus,

Gkð1� zÞ ¼ Gkð1� αÞ � z þ α�
Xk
m¼1

ð�1Þm k
m

� �
GmðzÞ; ½28�

for any z 2 ½α; 1� α�: Evaluating eq. [28] at z ¼ 1=2 yields

Gkð1� αÞ ¼ 1
2
� αþ

Xk�1

m¼1

ð�1Þm k
m

� �
Gm

1
2

� �
þ 1þ ð�1Þk
n o

Gk
1
2

� �
: ½29�

Plugging this back into eq. [28] proves the claim. □

Proof of Theorem 2. (Necessity) To construct Φn, one first writes differential
equation [5] in explicit form, i.e., using the definitions of ’ðzÞ and ψðzÞ provided
in Lemma 1. This yields

F0ðzÞ ¼ FðzÞn�1 � Fð1� zÞn�1

2

( )
½30�

�
ðn� 1Þð1� zÞFðzÞn�2 � ðn� 1ÞzFð1� zÞn�2 þ 1

2

Xn�2

k¼1

n� 1

k

 !
k

� FðzÞk�1Gn�k�1ð1� zÞ � Fð1� zÞk�1Gn�k�1ðzÞ
n o

8>>><
>>>:

9>>>=
>>>;

�1

:

Re-ordering the terms of the sum bymapping index k to n� k � 1, and subsequently

using the relationship
n� 1
k

� �
ðn� k � 1Þ ¼ ðn� 1Þ n� 2

k

� �
, one obtains

F0ðzÞ ¼ FðzÞn�1 � Fð1� zÞn�1

n� 1

( )
½31�
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�
2ð1� zÞFðzÞn�2 � 2zFð1� zÞn�2 þPn�2

k¼1

n� 2

k

 !

� FðzÞn�k�2Gkð1� zÞ � Fð1� zÞn�k�2GkðzÞ
n o

8>>><
>>>:

9>>>=
>>>;

�1

:

Replacing all occurrences of Fð1� zÞ by 1� FðzÞ, and similarly, all occurrences of
G1ð1� zÞ; :::;Gn�2ð1� zÞ by the corresponding expressions in Lemma 2, we arrive at

F0ðzÞ ¼ FðzÞn�1 � ð1� FðzÞÞn�1

n� 1

( )
½32�

�

2ð1� zÞFðzÞn�2 � 2zð1� FðzÞÞn�2 þPn�2

k¼1

n� 2

k

 !

� FðzÞn�k�2 Ck � z � Pk
m¼1

ð�1Þm k

m

 !
GkðzÞ

( )(

� ð1� FðzÞÞn�k�2GkðzÞ
)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

�1

:

In analogy with eq. [32], define the function Φn : IR2n�2 ! IR ¨ fþ1;�1g by

ΦnðF̂; Ĝ1; :::; Ĝn�2; Ĉ1; :::; Ĉn�2; zÞ ¼ F̂n�1 � ð1� F̂Þn�1

n� 1

( )
½33�

:

2ð1� zÞF̂n�2 � 2zð1� F̂Þn�2 þPn�2

k¼1

n� 2
k

� �

: F̂
n�k�2

Ĉk � z � Pk
m¼1

ð�1Þm k
m

� �
Ĝm

� 	
� ð1� F̂Þn�k�2

Ĝk

� 	
8>>><
>>>:

9>>>=
>>>;

�1

:

Then, by construction, F is the first component of a solution of the boundary
value problem stated in Theorem 2, thereby proving the first part of the theorem.

(Sufficiency) Suppose that ~F is monotone increasing, and that ~F is symmetric
in the sense that ~Fð1� zÞ ¼ 1� ~FðzÞ for any z 2 ½~α; 1� ~α�. Then, from ~Gkð~αÞ ¼ 0
and ~G0

kðzÞ ¼ ~FðzÞk, it follows that ~GkðzÞ ¼
R z
α
~FðxÞkdx. From the symmetry of ~F,

one may derive just as in the proof of Lemma 2 that

~Gkð1� zÞ ¼ ~Ck � z �
Xk
m¼1

ð�1Þm k
m

� �
~GkðzÞ; ½34�

for any integer k � 1, where
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~Ck ¼ 1
2
þ
Xk�1

m¼1

ð�1Þm k
m

� �
~Gm

1
2

� �
þ 1þ ð�1Þk
n o

~Gk
1
2

� �
: ½35�

By assumption, eq. [32] holds with F;G1; :::;Gn�2;C1; :::; Cn�2 replaced by
~F; ~G1; :::; ~Gn�2; ~C1; :::; ~Cn�2. Using the symmetry of ~F and functional equation [34]
for k ¼ 1; :::; n� 2, one arrives at

~F0ðzÞ ¼
~FðzÞn�1 � ~Fð1� zÞn�1

n� 1

( )
½36�

:
2ð1� zÞ~FðzÞn�2 � 2z~Fð1� zÞn�2 þPn�2

k¼1

n� 2
k

� �
: ~FðzÞn�k�2~Gkð1� zÞ � ~Fð1� zÞn�k�2~GkðzÞ
n o

8><
>:

9>=
>;

�1

:

Hence, invoking Lemma 1, ~F solves the first-order condition, and expected
payoffs are constant on the interval ½~α; 1� ~α�. Moreover, by the nature of
expected payoffs in the location game, any location z < ~α yields strictly lower
expected payoffs than ~α, and similarly, any location z > 1� ~α yields strictly
lower expected payoffs than 1� ~α. Thus, ~F really corresponds to a doubly
symmetric mixed-strategy equilibrium. □

Proof of eq. [15]. A straightforward application of the rule of L’Hôpital to
differential equation [5] shows that

f
1
2

� �
¼ ’0 1

2

� �
ψ0 1

2

� � : ½37�

Noting that Fð1=2Þ ¼ 1=2, one readily verifies that

’0 1
2

� �
¼ n� 1

2n�1 f
1
2

� �
: ½38�

Moreover, using G0
n�k�1ð1=2Þ ¼ Fn�k�1ð1=2Þ ¼ 1=2n�k�1, one can check that

ψ0 1
2

� �
¼ f

1
2

� �Xn�2

k¼1

n� 1

k

� �
kðk � 1Þ
2k�1

Gn�k�1
1
2

� �
�
Xn�2

k¼1

n� 1

k

� �
k

2n�1

� n� 1
2n�2

þ f
1
2

� � ðn� 1Þðn� 2Þ
2n�2

:

½39�

Exploiting the identities
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Xn�2

k¼1

n� 1
k

� �
kðk � 1Þ
2k�1 Gn�k�1

1
2

� �

¼ 1
2n�2

Xn�2

k¼1

n� 1
k

� �
kðk � 1Þ2n�k�1Gn�k�1

1
2

� �
½40�

¼ 1
2n�2

Xn�2

k¼1

n� 1
k

� �
ðn� k � 1Þðn� k � 2Þ2kGk

1
2

� �
½41�

¼ ðn� 1Þðn� 2Þ
2n�2

Xn�3

k¼1

n� 3
k

� �
2kGk

1
2

� �
½42�

and

Xn�2

k¼1

n� 1
k

� �
k ¼ ðn� 1Þ

Xn�2

k¼1

n� 2
k � 1

� �
¼ ðn� 1Þð2n�2 � 1Þ; ½43�

it follows that

ψ0 1
2

� �
¼ f

1
2

� � ðn� 1Þðn� 2Þ
2n�2 1þ

Xn�3

k¼1

n� 3
k

� �
2kGk

1
2

� �( )
½44�

� ðn� 1Þð1þ 2n�2Þ
2n�1 :

Plugging now eqs. [38] and [44] into eq. [37], and subsequently solving for
f 1=2ð Þ, one arrives at eq. [15]. □
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